Files and Pipes in R Video Demo

I’ve worked with various alternate file handlers in python before and wanted to explore the options in R. I was pleasantly surprised to find handlers prebuilt for tasks like compressing data. In addition, a pipe function is available to allow you to use less common commands on your file, like gpg for encryption.

I put together a quick video demo of how to use these functions, and it’s available on youtube:

If you are having a hard time reading the text, click here to view the video directly on youtube.

Comment here or on the video with any feedback or questions.

Simulating the Monty Hall Problem in R.

The Monty Hall Problem is famous in the world of statistics and probability. For those struggling with the intuition, simulating the problem is a great way to get at the answer. Randomly choose a door for the prize, randomly choose a door for the user to pick first, play out Monty’s role as host, and then show the results of both strategies.

Simulating Monty Hall in R
Simulating the strategies of Monty Hall

The numeric output will vary, but look something like:

> print(summary(games$strategy) / nrow(games))
stay switch
0.342 0.658

The following code does this in a rather short R example:

Clustering in R

Clustering is a useful technique for exploring your data. It groups records into clusters based on similar features. It’s also a key technique of unsupervised learning. The following is a simple example in R where I plotted the clusters and centroids.

kmeans() car clusters with centroids

The example uses the mtcars dataset built into R, which contains auto data extracted from Motor Trend Magazine in 1973-1974.

Clustering is done with the kmeans() function. Note that the graph is 2-dimensional, and I cluster by 2 features, but you could cluster by more features and project down to a 2-dimensional plane.

Feel free to make suggestions:

Installing pymc on OS X using homebrew

I’ve been working through the following book on Bayesian methods with an emphasis on the pymc library:

However, pymc installation on OS X can be a bit of a pain. The issues comes down to fortran… I know. The version of gfortran in newer gcc implementations doesn’t work well with the pymc build, you need gfortran 4.2, as provided orignally by apple. Homebrew has a package for this.

I dealt with this before, but had problems again after upgrading to Sierra. So this time, I thought I’d document the steps so I don’t have this problem again. Let me know if there are any steps that you feel need added as you try this.